Skip to main content

Menentukan FPB Dengan Cara Faktorisasi Prima

Sebelumnya Buku Online sudah membahas cara menentukan faktor persekutuan terkecil (FPB) dengan mencari faktor dari masing-masing bilangan. Selain dengan cara tersebut, kita dapat menentukan FPB dari dua bilangan atau lebih dengan terlebih dahulu menentukan faktorisasi prima masing-masing bilangan itu. Di mana faktorisasi prima merupakan perkalian semua faktor-faktor prima dari suatu bilangan.

Silahkan simak contoh soal berikut ini. “Tentukan FPB dari 72, 54 dan 36 dengan cara faktorisasi prima”. Hal pertama yang Anda lakukan adalah mencari faktorisasi prima dari ketiga bilangan tersebut yakni:
=> 72 = 23 × 32
=> 54 = 2 × 33
=> 36 = 22 × 32
Faktor persekutuan terbesar (FPB) dari 72, 54 dan 36 diperoleh dengan mengalikan faktor dengan bilangan pokok yang sama, dengan pangkat terendah. Jadi, FPB dari 72, 54 dan 36 = 2 × 32 = 18.
Dari uraian di atas dapat disimpulkan bahwa faktor persekutuan terbesar (FPB) dapat diperoleh dengan cara mengalikan faktor yang sama dengan pangkat terendah.
Untuk memantapkan pemahaman Anda tentang cara menentukan faktor persekutuan terbesar (FPB), silahkan simak contoh soal di bawah ini.
ContohSoal 1
Tentukan FPB dari bilangan 46, 115, dan 230 dengan cara faktorisasi prima.
Penyelesaian:
Faktorisasi prima 64 = 2 × 23
Faktorisasi prima 115 = 5 × 23
Faktorisasi prima 230 = 2 × 5 × 23
Jadi, FPB dari 46, 115 dan 230 = 23
ContohSoal 2
Tentukan FPB dari bilangan 54, 78, dan 100 dengan cara faktorisasi prima.
Penyelesaian:
Faktorisasi prima 54 = 2 × 33
Faktorisasi prima 78 = 2 × 3 × 13
Faktorisasi prima 100 = 22 × 52
Jadi, FPB dari 54, 78, dan 100 = 2
ContohSoal 3
Tentukan FPB dari bilangan 24, 36, dan 72 dengan cara faktorisasi prima.
Penyelesaian:
Faktorisasi prima 24 = 23 × 3
Faktorisasi prima 36 = 22 × 32
Faktorisasi prima 72 = 23 × 32
Jadi, FPB dari 24, 36, dan 72 = 22 × 3 = 12.
Selain dengan cara di atas masih ada cara lain yakni dengan menggunakan pohon faktor dan akan dibahas pada postingan berikutnya. Demikian cara menentukan FPB dari dua atau lebih bilangan bulat. Mohon maaf jika ada kata atau perhitungan yang salah dalam postingan di atas. Salam Buku Online

Comments

Popular posts from this blog

Oprasi Perkalian Pada Bilangan Pecahan

Pada operasi perkalian pecahan kita tidak perlu lagi menyamakan penyebut seperti pada penjumlahan dan pengurangan pada pecahan. Kita hanya mengalikan pembilang dengan pembilang dan penyebut dengan penyebut. Untuk membuktikan hal tersebut silahkan perhatikan uraian berikut. Sekarang kita akan mengalikan 3/4 dengan 4/5. Perhatikan gambar di bawah ini. Pada gambar di atas pada bagian baris (horizontal), daerah yang di arsir merupakan bentuk pecahan ¾. Sedangkan pada bagian kolom (vertikal), daerah yang diarsir merupakan bentuk pecahan 4/5. Jika dikalikan maka hasilnya: Sekarang perhatikan kembali gambar kotak-kotak di atas, terdiri dari 20 kotak dan kotak yang diarsir ada 12 maka bentuk pecahannya menjadi 12/20 atau jika dijadika lebih sederhana maka 12/20 = 3/5 atau: Jika bentuk pecahannya berupa pecahan campuran maka ubahlah  pecahan campuran menjadi pecahan biasa . Untuk memantapkan pemahaman Anda tentang operasi perkalian pada pecahan, silahkan sim...

Operasi Penjumlahan dan Pengurangan Pecahan

Operasi Penjumlahan dan Pengurangan Pecahan  dapat dilakukan jika penyebut kedua atau lebih dari pecahan tersebut memiliki nilai yang sama. Penjumlahan dan Pengurangan Pecahan Yang Penyebutnya Sama Misalkan “Budi dan Iwan masing-masing memilikisatu buah apel. Lalu mereka membelah masing-masing buah apel yang dimilikinya tersebut menjadi empat bagian yang sama. Mereka memberikan satu bagian kepada Masde. Tentukan jumlah apel yang diterima oleh Masde”. Karena satu buah apel dibagi menjadi empat maka bagian yang diberikan oleh Budi adalah ¼, begitu juga bagian yang diberikan oleh Iwan ¼ juga. Jadi, buah apel yang diterima Masde yakni: => ¼ + ¼ Dapatkah Anda hitung berapa ¼ + ¼? Untuk menjumlahkan ataupun mengurangkan dua atau lebih pecahan, pertama-tama harus menyamakan penyebut dari pecahan tersebut. Kemudian yang dijumlahkan atau dikurangkan hanya pembilangnya saja sedangkan penyebutnya tetap. Jadi kita dapat menghitung ¼ + ¼ yakni: Untuk memantapkan...

Sifat-Sifat Penjumlahan dan Pengurangan Pecahan

Sifat-sifat penjumlahan dan pengurangan pecahan  sama seperti  sifat-sifat penjumlahan bulangan bulat . Pada bilangan bulat kita mengenal lima sifat yakni sifat tertutup, sifat komutatif, sifat asosiatif, mempunyai unsur identitas, dan mempunyai invers. Kelima unsur-unsur tersebut juga dimiliki pada penjumlahan dan pengurangan pada bilangan pecahan. Sifat Tertutup Sifat tertutup maksudnya bahwa pada penjumlahan dan pengurangan pecahan akan selalu menghasilkan  bilangan pecahan  juga. Hal ini dapat dituliskan bahwa “untuk setiap bilangan pecahan a dan b, berlaku a + b = c dengan c juga bilangan pecahan” Untuk lebih memantapkan pemahaman Anda tentang sifat tertutup pada penjumlahan dan pengurangan bilangan pecahan, silahkan simak contoh soal di bawah ini. Contoh Soal 1 a. ¼ + ½  = ¾ di mana kita ketahui bahwa ¼ dan ½ merupakan bilangan pecahan dan ¾ juga merupakan bilangan pecahan. b. ¾ + (– ½) = ¼ Kita ketahui bahwa bilangan ¾ dan – ½ me...