Skip to main content

Sifat-Sifat Perkalian Pada Bilangan Bulat

Perkalian merupakan operasi penjumlahan berulang dengan bilangan yang sama. Misalnya 3 × 2 = 2 + 2 + 2 dan 2 × 3 = 3 + 3. Meskipun hasil akhirnya sama, perkalian 3 × 2 dan 2 × 3 memiliki arti yang berbeda, di mana 3 × 2 artinya tiga kali duanya, sedangkan 2 × 3 artinya dua kali tiganya.
Penjelasan di atas merupakan definisi perkalian pada bilangan bulat yang sudah dibahas pada postingan sebelumnya. Sedangkan, pada postingan kali ini, Mafia Online akan membahas mengenai sifat-sifat perkalian pada bilangan bulat.
Ada enam sifat-sifat perkalian pada bilangan bulat yang akan dibahas pada psotingan ini yakni sifat tertutup, sifat komutatif, sifat asosiatif, sifat distributif perkalian terhadap penjumlahan, sifat distributif perkalian terhadap pengurangan, dan memiliki elemen identitas.
A.Sifat Tertutup
Salah satu sifat operasi penjumlahan bilangan bulat yakni bersifat tertutup, begitu juga pada perkalian bilangan bulat juga bersifat tertutup. Sifat tertutup maksudnya bahwa pada perkalian pada bilangan bulat, akan selalu menghasilkan bilangan bulat juga. Hal ini dapat dituliskan bahwa “Untuk setiap bilangan bulat p dan q, selalu berlaku p × q = r dengan r juga bilangan bulat”.
Untuk lebih memantapkan pemahaman Anda tentang sifat tertutup operasi perkalian pada bilangan bulat, silahkan simak contoh soal di bawah ini.
Contoh Soal 1
a. 3 × 8 = 24
di mana kita ketahui bahwa 3 dan 8 merupakan bilangan bulat dan 24 juga merupakan bilangan bulat.
b. 3 × (–8) = –24
di mana kita ketahui bahwa 3 dan –8 merupakan bilangan bulat dan –24 juga merupakan bilangan bulat.
c. (–3) × 8 = –24
di mana kita ketahui bahwa –3 dan 8 merupakan bilangan bulat dan –24 juga merupakan bilangan bulat.
d. (–3) × (–8) = 24
di mana kita ketahui bahwa –3 dan –8 merupakan bilangan bulat dan 24 juga merupakan bilangan bulat.
Sifat Komutatif (Pertukaran)
Operasi perkalian dua bilangan bulat selalu diperoleh hasil yang sama walaupun kedua bilangan tersebut dipertukarkan tempatnya. Hal ini dapat dituliskan bahwa “Untuk setiap bilangan bulat p dan q, selalu berlaku p × q = q × p”.
Untuk lebih memantapkan pemahaman Anda tentang sifat komutatif (pertukaran) pada perkalian bilangan bulat, silahkan simak contoh soal di bawah ini.
Contoh Soal 2
a. 2 × (–5) = (–5) × 2 = –10
b. (–3) × (–4) = (–4) × (–3) = 12
C.Sifat Asosiatif (Pengelompokan)
Sifat ini menyatakan bahwa “Untuk setiap bilangan bulat p, q, dan r selalu berlaku (p × q) × r = p × (q × r)”.
 
Untuk lebih memantapkan pemahaman Anda tentang sifat asosiatif (pengelempokan) operasi perkalian pada bilangan bulat, silahkan simak contoh soal di bawah ini.
Contoh Soal 3
a. 3 × (–2 × 4) = (3 × (–2)) × 4 = –24
b. (–2 × 6) × 4 = –2 × (6 × 4) = –48
D.Sifat Distributif Perkalian Terhadap Penjumlahan
Sifat ini menyatakan bahwa “Untuk setiap bilangan bulat p, q, dan r selalu berlaku p × (q + r) = (p × q) + (p × r)”.
Untuk lebih memantapkan pemahaman Anda tentang sifat distributif perkalian terhadap penjumlahan pada bilangan bulat, silahkan simak contoh soal di bawah ini.
Contoh Soal 4
a.  2 × (4 + (–3)) = 2 × 1 = 2
=>(2 × 4) + (2 × (–3)) = 8 – 6 = 2
Jadi, 2 × (4 + (–3)) = (2 × 4) + (2 × (–3)) = 2
b.  (–3) × (–8 + 5) = (–3) × (–3) = 9
=>((–3) × (–8)) + (–3 × 5) = 24 – 14 = 9
Jadi, (–3) × (–8 + 5) = ((–3) × (–8)) + (–3 × 5) = 9
E.Sifat distributif perkalian terhadap pengurangan
Sifat ini menyatakan bahwa “Untuk setiap bilangan bulat p, q, dan r selalu berlaku p × (q – r) = (p × q) – (p × r)”.
Untuk lebih memantapkan pemahaman Anda tentang sifat distributif perkalian terhadap pengurangan pada bilangan bulat, silahkan simak contoh soal di bawah ini.
Contoh Soal 5
a.  5 × (8 – (–3)) = 5 × 11 = 55
=>(5 × 8) – (5 × (–3)) = 40 – (–15) = 55
Jadi, 5 × (8 – (–3)) = (5 × 8) – (5 × (–3)) = 55
b.  6 × (–7 – 4) = 6 × (–11) = –66
=> (6 × (–7)) – (6 × 4) = –42 – 24 = –66
Jadi, 6 × (–7 – 4) = (6 × (–7)) – (6 × 4) = –66
F.Mempunyai Elemen Identitas
Bilangan 1 (satu) merupakan elemen identitas pada perkalian. Artinya, untuk sebarang bilangan bulat apabila dikalikan 1 (satu), hasilnya adalah bilangan itu sendiri. Hal ini dapat dituliskan bahwa “Untuk setiap bilangan bulat p, selalu berlaku p × 1 = 1 × p = p”.

Demikian postingan Buku Online tentang sifat-sifat operasi perkalian pada bilangan bulat. Mohon maaf jika ada kata atau perhitungan yang salah dalam postingan di atas. Salam Buku Online

Comments

Popular posts from this blog

Oprasi Perkalian Pada Bilangan Pecahan

Pada operasi perkalian pecahan kita tidak perlu lagi menyamakan penyebut seperti pada penjumlahan dan pengurangan pada pecahan. Kita hanya mengalikan pembilang dengan pembilang dan penyebut dengan penyebut. Untuk membuktikan hal tersebut silahkan perhatikan uraian berikut. Sekarang kita akan mengalikan 3/4 dengan 4/5. Perhatikan gambar di bawah ini. Pada gambar di atas pada bagian baris (horizontal), daerah yang di arsir merupakan bentuk pecahan ¾. Sedangkan pada bagian kolom (vertikal), daerah yang diarsir merupakan bentuk pecahan 4/5. Jika dikalikan maka hasilnya: Sekarang perhatikan kembali gambar kotak-kotak di atas, terdiri dari 20 kotak dan kotak yang diarsir ada 12 maka bentuk pecahannya menjadi 12/20 atau jika dijadika lebih sederhana maka 12/20 = 3/5 atau: Jika bentuk pecahannya berupa pecahan campuran maka ubahlah  pecahan campuran menjadi pecahan biasa . Untuk memantapkan pemahaman Anda tentang operasi perkalian pada pecahan, silahkan simak c

Cara Mengerjakan Operasi Hitung Campuran Pada Bilangan Bulat

Operasi hitung campuran pada bilangan bulat sering muncul pada soal-soal ujian nasional (UN). Jadi Anda sangat penting mengetahui cara mengerjakan operasi hitung campuran pada bilangan bulat. Contoh hitung campuran bilangan bulat yang muncul pada UN yakni UN Matematika tahun 2009 dengan soal seperti berikut:  Hasil dari (–4 + 6) × (–2 – 3) adalah . . . a. –10 b. – 2 c. 10 d. 50 Bagaimana cara mengerjakan soal di atas? Dalam menyelesaikan operasi hitung bilangan bulat seperti soal UN 2009 di atas, Anda harus memperhatikan dua hal, yakni tanda operasi hitung dan tanda kurung. Apabila dalam suatu operasi hitung campuran bilangan bulat terdapat tanda kurung , pengerjaan yang berada dalam tanda kurung harus dikerjakan terlebih dahulu. Tetapi, bila dalam suatu operasi hitung bilangan bulat tidak terdapat tanda kurung, pengerjaannya berdasarkan sifat-sifat operasi hitung berikut. Operasi penjumlahan (+) dan pengurangan (–) sama kuat , artinya operasi yang terletak di

Operasi Penjumlahan dan Pengurangan Pecahan

Operasi Penjumlahan dan Pengurangan Pecahan  dapat dilakukan jika penyebut kedua atau lebih dari pecahan tersebut memiliki nilai yang sama. Penjumlahan dan Pengurangan Pecahan Yang Penyebutnya Sama Misalkan “Budi dan Iwan masing-masing memilikisatu buah apel. Lalu mereka membelah masing-masing buah apel yang dimilikinya tersebut menjadi empat bagian yang sama. Mereka memberikan satu bagian kepada Masde. Tentukan jumlah apel yang diterima oleh Masde”. Karena satu buah apel dibagi menjadi empat maka bagian yang diberikan oleh Budi adalah ¼, begitu juga bagian yang diberikan oleh Iwan ¼ juga. Jadi, buah apel yang diterima Masde yakni: => ¼ + ¼ Dapatkah Anda hitung berapa ¼ + ¼? Untuk menjumlahkan ataupun mengurangkan dua atau lebih pecahan, pertama-tama harus menyamakan penyebut dari pecahan tersebut. Kemudian yang dijumlahkan atau dikurangkan hanya pembilangnya saja sedangkan penyebutnya tetap. Jadi kita dapat menghitung ¼ + ¼ yakni: Untuk memantapkan pem