Skip to main content

Sifat -Sifat Invers Perkalian Pada Pecahan

Sifat-sifat perkalian pada pecahan sama seperti sifat-sifat perkalian pada bulangan bulat. Ada enam sifat-sifat perkalian pada bilangan bulat yakni sifat tertutup, sifat komutatif, sifat asosiatif, sifat distributif perkalian terhadap penjumlahan, sifat distributif perkalian terhadap pengurangan, dan memiliki elemen identitas. Semua sifat perkalian yang dimiliki oleh bilangan bulat juga dimiliki oleh bilangan pecahan. Serta ada tambahan lagi yakni invers perkalian pada pecahan.

Sifat Tertutup
Sifat tertutup maksudnya bahwa pada perkalian pada bilangan pecahan, akan selalu menghasilkan bilangan pecahan juga. Hal ini dapat dituliskan bahwa “Untuk setiap bilangan pecahan p dan q, selalu berlaku p × q = r dengan r juga bilangan pecahan”.
  
Contoh Soal 1
a. (3/5) × (8/11) = 24/55
di mana kita ketahui bahwa 3/5 dan 8/11 merupakan bilangan pecahan dan 24/55 juga merupakan bilangan pecahan.

b. 3/5 × (–8/11) = –24/55
di mana kita ketahui bahwa 3/5 dan –8/11 merupakan bilangan pecahan dan –24/55 juga merupakan bilangan pecahan.

c. (–3/5) × 8/11 = –24/55
di mana kita ketahui bahwa –3/5 dan 8/11 merupakan bilangan pecahan dan –24/55 juga merupakan bilangan pecahan.

d. (–3/5) × (–8/11) = 24/55
di mana kita ketahui bahwa –3/5 dan –8/11 merupakan bilangan pecahan dan 24/55 juga merupakan bilangan pecahan.

Sifat Komutatif (Pertukaran)
Operasi perkalian dua bilangan pecahan selalu diperoleh hasil yang sama walaupun kedua bilangan tersebut dipertukarkan tempatnya. Hal ini dapat dituliskan bahwa “Untuk setiap bilangan pecahan p dan q, selalu berlaku p × q = q × p”.

Sifat-sifat dan Invers Perkalian Pada Pecahan


Contoh Soal 2
a. 2/3 × (–5/7) = (–5/7) × 2/3 = –10/21
b. (–3/7) × (–4/5) = (–4/5) × (–3/7) = 12/35

Sifat Asosiatif (Pengelompokan)
Sifat ini menyatakan bahwa “Untuk setiap bilangan pecahan p, q, dan r selalu berlaku (p × q) × r = p × (q × r)”.

Contoh Soal 3
a. 3/5 × (–2/7 × 4/5) = (3/5 × (–2/7)) × 4/5 = –24/175
b. (–2/7 × 6/5) × 4/11 = –2/7 × (6/5 × 4/11) = –48/385

Sifat Distributif Perkalian Terhadap Penjumlahan
Sifat ini menyatakan bahwa “Untuk setiap bilangan pecahan p, q, dan r selalu berlaku p × (q + r) = (p × q) + (p × r)”.

Contoh Soal 4
a.  2/3 × (4/3 + (–3/3)) = 2/3 × 1/3 = 2/9
=>(2/3 × 4/3) + (2/3 × (–3/3)) = 8/9 – 6/9 = 2/9
Jadi, 2/3 × (4/3 + (–3/3)) = (2/3 × 4/3) + (2/3 × (–33/)) = 2/9

b.  (–3/7) × (–8/7 + 5/7) = (–3/7) × (–3/7) = 9/49
=>((–3/7) × (–8/7)) + (–3/7 × 5/7) = 24/49 – 14/49 = 9/49
Jadi, (–3/7) × (–8/7 + 5/7) = ((–3/7) × (–8/7)) + (–3/7 × 5/7) = 9/49

Sifat distributif perkalian terhadap pengurangan
Sifat ini menyatakan bahwa “Untuk setiap bilangan pecahan p, q, dan r selalu berlaku p × (q – r) = (p × q) – (p × r)”.

Contoh Soal 5
a.  5/7 × (8/7 – (–3/7)) = 5/7 × 11/7 = 55/49
=>(5/7 × 8/7) – (5/7 × (–3/7)) = 40/49 – (–15/49) = 55/49
Jadi, 5/7 × (8/7 – (–3/7)) = (5/7 × 8/7) – (5/7 × (–3/7)) = 55/49

b.  6/5 × (–7/5 – 4/5) = 6/5 × (–11/5) = –66/25
=> (6/5 × (–7/5)) – (6/5 × 4/5) = –42/25 – 24/25 = –66/25
Jadi, 6/5 × (–7/5 – 4/5) = (6/5 × (–7/5)) – (6/5 × 4/5) = –66/25

Mempunyai Elemen Identitas
Bilangan 1 (satu) merupakan elemen identitas pada perkalian. Artinya, untuk sebarang bilangan pecahan apabila dikalikan 1 (satu), hasilnya adalah bilangan itu sendiri. Hal ini dapat dituliskan bahwa “Untuk setiap bilangan pecahan p, selalu berlaku p × 1 = 1 × p = p”.

Invers Perkalian
Invers perkalian ini akan diterapkan pada operasi pembagian pada pecahan. Sekarang perhatikan perkalian bilangan pecahan berikut ini.
=> 7/5 × 5/7 = 1
=> - 2/7 × - 7/2 = 1
Pada perkalian-perkalian bilangan di atas, 7/5 adalah invers perkalian (kebalikan) dari 5/7. Sebaliknya, 5/7 adalah invers perkalian (kebalikan) dari 7/5. Secara umum dapat dituliskan bahwa invers perkalian dari pecahan p/q adalah q/p atau invers perkalian dari q/p adalah p/q, dan hasil kali suatu bilangan dengan invers (kebalikan) bilangan itu sama dengan 1.

Contoh Soal 6
Tentukan invers perkalian bilangan-bilangan berikut.
a. 3
b. –4
c. 4/9
d. 2¾

Penyelesaian:
a. 1/3
b. –¼
c. 9/4 = 2¼
d. Ubah pecahan campuran menjadi pecahan biasa yakni 2¾ = 11/4, maka invers perkalian dari 11/4 adalah 4/11.

Demikian postingan Buku Pelajaran Online tentang sifat-sifat dan invers perkalian pada bilangan pecahan. Mohon maaf jika ada kata atau perhitungan yang salah dalam postingan di atas.

Comments

Popular posts from this blog

Cara Menentukan FPB dan KPK Dengan Pohon Faktor

Pada dasarnya mencari faktor persekutuan terbesar (FPB) dan kelipatan persekutuan terkecil (KPK) dengan pohon faktor hampir sama seperti mencari FPB dan KPK dengan faktorisasi prima , karena dari pohon faktor ini akan menghasilkan fakorisasi prima suatu bilangan bulat.  Sebelum membahas cara mencari FPB dan KPK dengan pohon faktor, alangkah baiknya Anda paham terlebih dahulu apa pengertian pohon faktor. Pohon faktor adalah pohon yang tumbuh ke bawah dengan menggunakan perkalian yang menggunakan bilangan prima. Berikut contoh gambar pohon faktor dari bilangan 105. Perhatikan gambar di atas! Cara membuat pohon faktor adalah sebagai berikut. Pertama , tentukan bilangan apa yang akan dicari faktorisasi primanya, misalnya bilangan 105 seperti pada gambar di atas. Kedua , bagi bilangan 105 dengan bilangan prima terkecil yang mungkin bisa dilakukan. Bilangan prima terkecil yang bisa membagi bilangan 105 adalah 3. Tulis bilangan...

Penerapan Bilangan Bulat Dalam Kehidupan Sehari-Hari

Banyak sekali penerapan bilangan bulat dalam kehidupan sehari misalnya pada disiplin ilmu fisika, bidang kedokteran, pendidikan maupun bidang ekonomi. Pada postingan ini kita hanya membahas penerapan bilangan bulat pada termometer , pada saat ujian penerimaan mahasiswa baru dan kedalaman suatu permukaan di bumi. Penerapan pada Termometer Pernahkah Anda memperhatikan termometer ? Termometer adalah alat yang digunakan untuk mengukur suhu suatu zat. Pada pengukuran menggunakan termometer, untuk menyatakan suhu di bawah 0° C digunakan tanda negatif. Selama bulan Januari suhu tertinggi di kota Berlin, Jerman 2° C di atas titik beku (0° C) dan suhu terendah 3° C di bawah titik beku. Bilangan apakah yang digunakan untuk kondisi cuaca seperti di kota Berlin? Cukupkah bilangan asli atau bilangan cacah untuk menyatakan kondisi suhu tersebut? Perhatikanlah uraian berikut ini. Untuk suhu 2° C di atas titik beku (0° C) biasa ditulis +2° C atau 2° C, sedangkan untuk suhu 3° C di baw...

Oprasi Perkalian Pada Bilangan Pecahan

Pada operasi perkalian pecahan kita tidak perlu lagi menyamakan penyebut seperti pada penjumlahan dan pengurangan pada pecahan. Kita hanya mengalikan pembilang dengan pembilang dan penyebut dengan penyebut. Untuk membuktikan hal tersebut silahkan perhatikan uraian berikut. Sekarang kita akan mengalikan 3/4 dengan 4/5. Perhatikan gambar di bawah ini. Pada gambar di atas pada bagian baris (horizontal), daerah yang di arsir merupakan bentuk pecahan ¾. Sedangkan pada bagian kolom (vertikal), daerah yang diarsir merupakan bentuk pecahan 4/5. Jika dikalikan maka hasilnya: Sekarang perhatikan kembali gambar kotak-kotak di atas, terdiri dari 20 kotak dan kotak yang diarsir ada 12 maka bentuk pecahannya menjadi 12/20 atau jika dijadika lebih sederhana maka 12/20 = 3/5 atau: Jika bentuk pecahannya berupa pecahan campuran maka ubahlah  pecahan campuran menjadi pecahan biasa . Untuk memantapkan pemahaman Anda tentang operasi perkalian pada pecahan, silahkan sim...